Artificial intelligence-enabled detection and assessment of Parkinson’s disease using nocturnal breathing signals
Oct 30, 2022·,,,,,,,,,,,,,·
0 min read
Yuzhe Yang
Yuan Yuan
Guo Zhang
Hao Wang
Ying-Cong Chen
Yingcheng Liu
Christopher Tarolli
Daniel Crepeau
Jan Bukartyk
Mithri Junna
Aleksandar Videnovic
Terry Ellis
Melissa Lipford
Ray Dorsey
Dina Katabi
Abstract
There are currently no effective biomarkers for diagnosing Parkinson’s disease (PD) or tracking its progression. Here, we developed an artificial intelligence (AI) model to detect PD and track its progression from nocturnal breathing signals. The model was evaluated on a large dataset comprising 7,671 individuals, using data from several hospitals in the United States, as well as multiple public datasets. The AI model can detect PD with an area-under-the-curve of 0.90 and 0.85 on held-out and external test sets, respectively. The AI model can also estimate PD severity and progression in accordance with the Movement Disorder Society Unified Parkinson’s Disease Rating Scale (R= 0.94). The AI model uses an attention layer that allows for interpreting its predictions with respect to sleep and electroencephalogram. Moreover, the model can assess PD in the home setting in a touchless manner, by extracting breathing from radio waves that bounce off a person’s body during sleep. Our study demonstrates the feasibility of objective, noninvasive, at-home assessment of PD, and also provides initial evidence that this AI model may be useful for risk assessment before clinical diagnosis.
Type
Publication
Nature Medicine